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Language Modeling ≠ Good Assistant

Prompt: Plan a trip to experience Beijing like a local

Llama 2 Base: 
.
Beijing is a city of contrasts. It is a city of
ancient history and modern technology. It is
a city of ancient traditions and modern
lifestyles. It is a city of ancient culture and
modern art. It is a city of ancient architecture
and modern skyscrapers. It is a city of
ancient customs and modern fashion. It is a
city of ancient traditions and modern
lifestyles. It is a city of ancient culture and
modern art.

Llama 2 Chat: 
Sure! Here's a 7-day itinerary for experiencing Beijing 
like a local:
Day 1: Exploring the Hutongs
Explore Beijing's historic hutongs, narrow alleys rich 
with old houses and shops. Savor Chinese tea and local 
snacks like roasted chestnuts. Visit the iconic Drum 
Tower and indulge in a home-cooked dinner with a local 
family.
Day 2: Temple of Heaven Park
…

Weakness 1: Not Helpful!



Language Modeling ≠ Good assistant

Weakness 2: May Harmful Weakness 3: Not Powerful

Example of Jailbreak The best model achieves only 12.24% success. 
(OSWorld: Real Computer Environments)



Prompt Engineering

No Gradient Updates: One of the core principles of ICL is that the model 
doesn't undergo parameter updates or gradient descent when exposed to a 
new task.

Few-Shot, and Zero-Shot Learning: Few-Shot Learning requires a very 
small number of examples, while Zero-Shot Learning requires only a 
description of the task.



Prompt Engineering

In-Context-Learning-based (Few-Shot) and Instruction-Based (Zero-Shot).

l In-Context-Learning (Few-Shot)
This category involves designing prompts that include several 
examples that demonstrate the desired task or response style. 
The model learns from these contexts and forms the finest 
prompt to gather better answer.

e.g. APE：
LLM serves as advanced prompt engineers by creating and 
scoring multiple prompts from dataset inputs and outputs, 
selecting and using the best-performing ones for further 
applications.

[1] Zhou, Yongchao et al. “Large Language Models Are Human-Level Prompt Engineers.” ArXiv abs/2211.01910 (2022): n. pag.



Prompt Engineering
l Instruction-based (Zero-Shot)
In this category, prompts are straightforward and directive, 
explicitly telling the model what task to perform or what kind of 
response is expected.

e.g. Ghost Attention in Llama2
Ghost Attention focuses on system prompts or multi-turn 
dialogues.
• Hobbies (You enjoy e.g., Tennis)
• Language (Speak in e.g., French)
• Public Figures (Act as e.g., Napoleon)
• ...

e.g. BPO in GLM
BPO focuses on refining user commands and aligning them from 
an input perspective. 
Common optimization strategies in BPO include enhancing 
inference explanations, refining user queries, highlighting key 
points, and bolstering security.

[1] Touvron, Hugo et al. “Llama 2: Open Foundation and Fine-Tuned Chat Models.” ArXiv abs/2307.09288 (2023): n. pag.
[2] Cheng, Jiale et al. “Black-Box Prompt Optimization: Aligning Large Language Models without Model Training.” ArXiv abs/2311.04155 (2023): n. pag.



Limitation of Prompt Engineering

Limited Context Capacity
•Restricted Input Length: Most prompt-based models have a limit on the number of tokens
they can process, which constrains the amount of information that can be provided at once.
•Loss of Contextual Information: When dealing with extensive texts, crucial information
may be omitted, leading to less accurate or relevant responses.

Complex Tasks Likely Require Gradient Steps
•Iterative Refinement Needed: Complex tasks might necessitate multiple iterations and
manual adjustments of prompts, which can be time-consuming and less efficient.
•Lack of Fine-Tuning: Prompt engineering alone often cannot adjust the internal
parameters of the model, limiting its ability to learn from specific tasks.



Supervised Fine-Tuning (SFT)

Simplicity and Directness: One of the primary characteristics of SFT is its
simplicity and straightforwardness. It is merely a continuation of the pre-training
and fine-tuning paradigm in the field of NLP.

Generalization to Unseen Tasks: May effectively adapt to and perform well on
new, previously unseen tasks.



SFT

SFT is used to improve the performance of a pre-trained model. 

• Starting Point: A model that has been pre-trained on a large dataset.
• Supervised Learning: Using labeled data to further train the model.
• Goal: To adapt the model to perform specific tasks more effectively.

Key Points:
• Utilizes specific, labeled datasets.
• Enhances model accuracy for targeted applications.



SFT

[1]. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 
arXiv:1810.04805.

T h e  p r e t r a i n i n g - f i n e t u n i n g 
paradigm is very popular, having 
gained prominence since the era of 
BERT, T5, and GPT2.

But ChatGPT had not yet emerged at that time. Why?
For Supervised Fine-Tuning (SFT), one important reason is that downstream fine-tuning tasks at that
time were single-task rather than multi-task.



SFT

[1]. Chung, H. W., Hou, L., Longpre, S., et al. (2022). Scaling Instruction-Finetuned Language Models. arXiv:2210.11416.
[2]. Wang, Y., et al. (2022). Super-NaturalInstructions: 1600+ NLP Tasks. EMNLP 2022. DOI: 10.18653/v1/2022.emnlp-main.340.

Flan-T5 used a dataset that 
seemed daunting at the time, 
Super-Natural Instructions, a 
benchmark of 1,616 diverse 
NLP tasks.

Flan-T5 achieves strong few-
shot performance even 
compared to much larger 
models, such as PaLM 62B.



SFT

[1]. Chung, H. W., Hou, L., Longpre, S., et al. (2022). Scaling Instruction-Finetuned Language Models. arXiv:2210.11416.

Although Flan-T5 demonstrated the 
benefits of scaling up fine-tuning tasks, it 
is not the LLM we commonly use today. 
The more likely reason is its data format.

Although it includes many task types and 
the data is human-labeled, this does not 
necessarily ensure alignment with user 
needs.
• Academic tasks may not correspond 

to the requirements of regular users.
• Moreover, the response format may 

not suit the dialogue format needed 
for an assistant.



SFT

Flan-T5 indirectly suggests that we should 
• Use instructions aligned with user needs
• The generated responses should be close to a dialogue 

generation format.

Next, we'll address these two questions: 
• Where do we collect user instructions from? 
• Where do we collect corresponding responses from?

The earliest practices were very labor-intensive, relying entirely 
on humans to write instructions and match corresponding 
responses. Not suitable for ordinary players.

[1]. Ouyang, L., Wu, J., Jiang, X., et al. (2022). Training language models to follow instructions with human feedback. arXiv:2203.02155.



SFT

Since the introduction of ChatGPT, our acquisition of (cost-effective) SFT data has experienced a 
significant expansion. 

This enrichment primarily stems from the adoption of three distinct methodologies: 
• Crowdsourced Collection: This method involves leveraging the collective intelligence of 

a large group of individuals, typically sourced from online platforms or communities, to 
gather diverse SFT data through various tasks or interactions.

• LLM Self-Iteration: Here, we capitalize on the ability of LLMs like ChatGPT to 
continuously improve themselves through self-training iterations. 

• Modification of Existing Datasets: This approach entails adapting and enhancing pre-
existing datasets to better suit the requirements of SFT training. It involves techniques 
such as data augmentation, annotation, or domain-specific tailoring to enrich the dataset's 
diversity and relevance.



SFT

Crowdsourced collection:

A sharing tool. The first open, human instruction 
dataset.

Live and Community-Driven LLM 
Comparison.

[1]. Zheng, L., Chiang, W.-L., Sheng, Y., et al. (2024). LMSYS-Chat-1M: A Large-Scale Real-World LLM Conversation Dataset. arXiv:2309.11998.
[2]. "Open Assistant Conversations Dataset Release 2 (OASST2)," GitHub, https://github.com/LAION-AI/Open-Assistant/



SFT

LLM Self-Iteration:

[1]. Wang, Y., Kordi, Y., Mishra, S., et al. (2023). Self-Instruct: Aligning Language Models with Self-Generated Instructions. arXiv:2212.10560.
[2]. Huang, Y., Liu, X., Gong, Y., et al. (2024). Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning. arXiv:2403.02333.

Self-Instruction: Seed -> Bootstrap. KPDDS: Seed -> Key-Point -> Bootstrap.



SFT

Modification of Existing Datasets:

[1] X. Li et al. Self-Alignment with Instruction Backtranslation. arXiv:2308.06259.
[2] R.-Z. Fan et al., "Reformatted Alignment," 2024, arXiv:2402.12219.

Instruction Backtranslation: Reuse the 
pretrain corpus.

Reformatted Alignment: Reuse the supervised data.



Our SFT Example : TableLLM

• We augment existing benchmarks by 
enriching their reasoning processes to 
facilitate the training of LLMs.

• To increase the diversity and coverage of 
the training data, we provide table atom 
operator list and use a cross-validation 
strategy to automatically generate new 
questions and answers from the provided 
tabular data

Xiaokang Zhang，Jing Zhang, etc. https://arxiv.org/abs/2403.19318



SFT

Bloom of SFT Models:

Alpaca
13 Mar. 2023
● 52k self-instruct style data distilled 

from text-davinci-003
● LLaMA 7B

Vicuna (lmsys/vicuna-7b-delta-v0)
30 Mar. 2023
● Fine-tunes ChatGPT data from 

ShareGPT
● LLaMA 7B and 13B.

Open Assistant
14 Apr. 2023
● human-annotated assistant-style 

conversation corpus (161K).
● Pythia Based.

[1] Wang, Y., et al. (2023). How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources. arXiv preprint arXiv:2306.04751.

Magicoder
4 Dec. 2023
● 75k LLM-generated data 

by leveraging code corpus.
● Trained on deepseek-

coder.



Limitation of SFT

• Obtaining high-quality groundtruth data for various tasks can be costly and 
time-consuming.

• Some questions may not have a groundtruth answer at all. For example, 
creating a catchy song.

• The asymmetry between annotators' knowledge and the model's knowledge
• If the annotator's knowledge exceeds that of the model, it might increase 

the likelihood of hallucinations. The model, despite not knowing the answer, 
attempts to generate an incorrect response in the correct format.

• If the annotator's knowledge is inferior to that of the model, the model 
might learn suboptimal responses. This is entirely possible, from a memory 
perspective, as the 'knowledge capacity' of an ordinary person is far smaller 
than that of a large model.



RLHF

Directly Model Preferences: Allows the model to generate responses that better
align with human expectations and values, going beyond mere likelihood
estimation (SFT).

Generalize Beyond Limited Labeled Data: RLHF may have better
generalization capabilities, as it learns not just individual tasks but the
"principles" required for those tasks.



RLHF

Optimization Objective: Maximize Expected Reward of High-Quality 
Language Model Samples.



RLHF: Reward Modeling

Why Use Language Models to Model Rewards?

• Efficiency and Cost-Effectiveness:
- Humans are too slow and expensive: Relying on human annotators for feedback and
reward modeling is time-consuming and costly. Models can process vast amounts of
data quickly and at a fraction of the cost, enabling faster iteration and development.

• Consistency and Reliability:
- Human labeling variance is too high: Human annotators can be inconsistent, leading to
high variance in labeling. This inconsistency can affect the quality of the training data.
Models provide a more consistent and reliable approach to reward modeling, reducing
variability and improving the overall quality of the learned behavior.



RLHF: Reward Modeling

𝑟!
𝑥, 𝑦" 8 

Relatively Preferred Probability(under Bradley-Terry Model)

Optimize with Preference Dataset

ℒ# 𝑟$ 𝒟 = −𝔼 𝑥 𝑦% 𝑦& ∼𝒟 𝑙𝑜g𝜎 𝑟$ 𝑥 𝑦% − 𝑟$ 𝑥 𝑦&

𝑝∗ 𝑦" ≻ 𝑦* ∣ 𝑥 =
exp 𝑟∗ 𝑥 𝑦"

ex p 𝑟∗ 𝑥 𝑦" + ex p 𝑟∗ 𝑥 𝑦*

𝑥, 𝑦* 5

Reward Model

How do we model human preferences?
• Pairwise comparisons are more reliable than direct rating.



RLHF: Reward Modeling

Instantiation: Initialized from Supervised Fine-tuning Model, and apply the Bradley-Terry Model.

Transformer Decoder

Softmax

Transformer Decoder

Linear

Scalar RewardLogits

𝜋+!"#

𝑟Unembedding
Layer

Regression
Head

𝑟$$

𝜃

Linear



RLHF: Reward Modeling

Evaluation: Learned Reward Model is Good Robust Proxy of Human Preference

[1] Shengyi Huang, et al. The N+ Implementation Details of RLHF with PPO: A Case Study on TL;DR Summarization. Hugging Face 2024



RLHF: Rejection Sampling 

Naïve Usage: Rejection Sampling (Best-of-N)

[1] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, et al. WebGPT: Browser-assisted question-answering with human feedback. OpenAI 2022

𝜋+!"#

𝑦" 𝑦* 𝑦,…

5.2 6.7 -1.5

Evaluated by 𝑟$

𝑥

Sample From 𝜋+!"#(𝑦|𝑥)

Output



RLHF: Rejection Sampling 

Naïve Usage +: Rejection Sampling (Best-of-N) + Finetuning

[1] Hugo Touvron, Louis Martin, Kevin Stone, et al. "Llama 2: Open Foundation and Fine-Tuned Chat Models." arXiv, 2023.
[2] Deng et al. (2020). Residual Energy-Based Models for Text Generation. arXiv:2004.11714.

𝜋+!"#

𝑦" 𝑦* 𝑦,…

5.2 6.7 -1.5

Evaluated by 𝑟$

𝑥

Sample From 𝜋+!"#(𝑦|𝑥)

Output

For each prompt, the sample obtaining the 
highest reward score is considered the new 
gold standard. Then fine-tune the model on 
the new set of ranked samples, reinforcing 
the reward. [1]



RLHF: Apply the RL 

[1] Rui Zheng et al. “Secrets of RLHF in Large Language Models Part I: PPO.” ArXiv abs/2307.04964

Before we Maximize Expected Reward, we must beware of Reward Hacking.

Prevent Reward Hacking by Adding KL 
Divergence Penalty

𝑚𝑎𝑥
+
𝔼-∼𝒟,/∼0% 𝑦 𝑥 𝑟$ 𝑥 𝑦

− 𝛽𝔻12 𝜋+ 𝑦 ∣ 𝑥 ∣∣ 𝜋345 𝑦 ∣ 𝑥

𝑟(𝑥, 𝑦) = 𝑟!(𝑥, 𝑦) − 𝛽(log 𝜋"(𝑦
∣ 𝑥) − log 𝜋ref(𝑦 ∣ 𝑥))



RLHF: Reviewing REINFORCE Algorithm

Maximize Expected Reward of Model Output

Derive Policy Gradient

𝑚𝑎𝑥
+
ℒ = 𝔼-∼6,/∼0% 𝑦 𝑥 𝑟 x, 𝑦

∇+ℒ = 𝔼-∼6 ∇+𝔼/∼0% 𝑦 𝑥 𝑟 x, 𝑦

= 𝔼-∼6 ?
/

𝑟 𝑥 𝑦 ∇+𝜋+ 𝑦 𝑥

= 𝔼-∼6 ?
/

𝑟 𝑥 𝑦 ∇+log 𝜋+ 𝑦 𝑥 𝜋+ 𝑦 𝑥

= 𝔼-∼6,/∼0% 𝑦 𝑥 𝑟 𝑥 𝑦 ?
78"

9

∇+ log 𝜋+ 𝑦7 𝑥, 𝑦":7;"

∇+log 𝜋+ 𝑦 𝑥 =
1

𝜋+ 𝑦 𝑥
∇+𝜋+ 𝑦 𝑥

Learn by Gradient Ascend(REINFORCE)

𝜃<=% ⟵ 𝜃 + 𝛼 E 𝑟(𝑥, 𝑦)?
78"

9

∇+log 𝜋+ 𝑦7 𝑥, 𝑦":7;"

Use Log to Factorize Probability



RLHF: From REINFORCE To PPO 

Issues with REINFORCE:

- High Variance: The method often suffers from high variance due to estimating the gradient 
instead of the loss.

- Gradient Updates: Changes in gradient updates may alter the data distribution sharply, potentially 
causing the agent to explore "useless" regions.

- Policy Dependency: Sampled trajectories and rewards are only valid for the current policy, not 
the updated one.

So, we usually use more stable and higher sample utilization PPO algorithms.



RLHF: PPO Algorithm 

[1] Schulman et al. (2015). High-Dimensional Continuous Control Using Generalized Advantage Estimation. arXiv:1506.02438.

Reduced variance:

Proximal Policy Optimization 
(PPO) is a reinforcement learning 
algorithm that enhances the actor-
critic framework by incorporating 
several techniques for stability and 
efficiency. 

Instead of directly using rewards to 
update the policy, PPO utilizes a 
value network (critic) to estimate 
the advantage function. 



RLHF: PPO Algorithm 

[1] Schulman et al. (2017). Proximal Policy Optimization Algorithms. arXiv:1707.06347

Stable Gradient Updates:
Proximal Policy Optimization (PPO) aims to enhance the 
stability of policy training by constraining the extent of 
changes made to the policy during each training epoch. This 
approach prevents excessively large policy updates.

There are two key reasons for this:

1. Empirical evidence shows that smaller policy updates are 
more likely to converge to an optimal solution.
2. Large policy updates can lead to significantly poor policies, 
from which recovery can be slow or even impossible, akin to 
"falling off a cliff."

Taking smaller policy updates to 
improve the training stability



RLHF: PPO Algorithm 

[1] Schulman et al. (2017). Proximal Policy Optimization Algorithms. arXiv:1707.06347

Data Efficient:
Importance Sampling enables PPO to optimize its policy updates by leveraging data collected from
previous policies. This approach allows the algorithm to reuse valuable data, reducing the need to
discard it and making the learning process more efficient in terms of the number of samples required.



RLHF: PPO Algorithm 

[1] Schulman et al. (2017). Proximal Policy Optimization Algorithms. arXiv:1707.06347

• Actor-Critic Framework
• Actor: Responsible for choosing

actions based on a policy.
• Critic: Evaluates the actions

chosen by the actor.
• Surrogate objective function

• Clipping Mechanism: limit the
changes in the policy update.

• Sample efficiency: calculate the
advantage estimates using both
the old and new policies.



Reinforcement Learning

𝜋>?9 𝜋3
𝑟$

𝒟(A) Env

Actor Critic

Copy

𝜋C?9_E=F

Overview of PPO Component For LLM:
The value network, which is the
critic, often shares the same
architecture as the reward model and
is initialized with the same
parameters.

For reference model and policy
model, we initialize both models
from a SFT model.

Requires fine memory management.
(credit to OpenRLHF).

https://github.com/OpenLLMAI/OpenRLHF


RLHF: PPO Algorithm 

[1] Rui Zheng et al. “Secrets of RLHF in Large Language Models Part I: PPO.” ArXiv abs/2307.04964
[2] Zheng Yuan et al. “RRHF: Rank Responses to Align Language Models with Human Feedback without tears.” ArXiv
abs/2304.05302.

Challenges in RL Optimization:
•Sampling: Slow and resource-
intensive process.
•Hyperparameter Sensitivity: 
Performance highly dependent 
on tuning specific parameters.



RLHF: Skip the Reward Model

DPO
1. RLHF Objective:

max#!𝔼$~𝒟,(~#! 𝑟 𝑥, 𝑦 − 𝛽𝔻)* 𝜋" 𝑦 𝑥 𝜋+,-(𝑦|𝑥)]
2. Optimal Solution of RLHF Objective:

𝜋" 𝑥, 𝑦 =
1

𝑍 𝑥
𝜋+,- 𝑦 𝑥 exp

1
𝛽
𝑟 𝑥, 𝑦

rearrange
𝒓 𝒙, 𝒚 = 𝛃 𝐥𝐨𝐠

𝜋" 𝒙, 𝒚
𝝅𝐫𝐞𝐟 𝒙, 𝒚

+ 𝛃 𝐥𝐨𝐠 𝒁(𝒙)

We can express the reward model via policy model !



LLM Alignment without Reward Model
DPO
max#!𝔼$~𝒟,(~#! 𝑟 𝑥, 𝑦 − 𝛽𝔻)* 𝜋" 𝑦 𝑥 𝜋+,-(𝑦|𝑥)]

= max
#

𝔼$~𝒟𝔼(~#((|$)[𝑟 𝑥, 𝑦 − 𝛽 log
𝜋 𝑦 𝑥
𝜋+,- 𝑦 𝑥

]

= min
#
𝔼$~𝒟𝔼(~#((|$)[ log

𝜋 𝑦 𝑥
𝜋+,- 𝑦 𝑥

−
1
𝛽
𝑟(𝑥, 𝑦)]

= min
#
𝔼$~𝒟𝔼(~# 𝑦 𝑥 log

𝜋 𝑦 𝑥
1

𝑍 𝑥 𝜋+,- 𝑦 𝑥 exp 1
𝛽 𝑟 𝑥, 𝑦

− log 𝑍 𝑥 (1)

where

𝑍 𝑥 =G
(

𝜋+,- 𝑦 𝑥 exp
1
𝛽
𝑟 𝑥, 𝑦



LLM Alignment without Reward Model
DPO
Let’s define

𝜋∗ 𝑦 𝑥 =
1

𝑍 𝑥
𝜋+,- 𝑦 𝑥 exp

1
𝛽
𝑟 𝑥, 𝑦

1 = min
#
𝔼$~𝒟 𝔼(~# 𝑦 𝑥 log

𝜋 𝑦 𝑥
𝜋∗ 𝑦 𝑥 − log 𝑍 𝑥

= min
#
𝔼$~𝒟[𝔻)*(𝜋 𝑦 𝑥 𝜋∗ 𝑦 𝑥 − log 𝑍(𝑥)]

We have the optimal solution

𝜋 𝑦 𝑥 = 𝜋∗ 𝑦 𝑥 =
1

𝑍 𝑥 𝜋+,- 𝑦 𝑥 exp
1
𝛽 𝑟 𝑥, 𝑦

𝒓 𝒙, 𝒚 = 𝛃 𝐥𝐨𝐠
𝜋" 𝒙, 𝒚
𝝅𝐫𝐞𝐟 𝒙, 𝒚

+ 𝛃 𝐥𝐨𝐠 𝒁(𝒙)



LLM Alignment without Reward Model

DPO
3. Recall Reward Model Objective:

ℒ5 𝑟!, 𝒟 = −𝔼 $,(",(# ~𝒟[log 𝜎(𝑟! 𝑥, 𝑦6 − 𝑟! 𝑥, 𝑦7 )]
4. DPO Objective (substituting 2. into 3.):

ℒ89: 𝜋", 𝜋+,- = −𝔼 $,(",(# ~𝒟[log 𝜎(𝛽 log
𝜋" 𝑥, 𝑦6
𝜋+,- 𝑥, 𝑦6

− 𝛽 log
𝜋" 𝑥, 𝑦7
𝜋+,- 𝑥, 𝑦7

)]

𝒓 𝒙, 𝒚 = 𝛃 𝐥𝐨𝐠
𝜋" 𝒙, 𝒚
𝝅𝐫𝐞𝐟 𝒙, 𝒚

+ 𝛃 𝐥𝐨𝐠 𝒁(𝒙)



RLHF: Skip the Reward Model

Credit Tom Goldstein
https://twitter.com/tomgoldsteincs

DPO and PPO are very different 
optimizers.

It is learning directly from preferences 
vs. using RL update rules.



Alignment Method Summary

Algorithm Data Requirement
Computational Resources 
Needed Expressive Potential

Prompt-Based ★★☆☆☆ ★★☆☆☆ ★★★☆☆
SFT (Supervised Fine-
Tuning) ★★★★★ ★★★☆☆ ★★★★☆

DPO (Direct Policy 
Optimization) ★★★★☆ ★★★★☆ ★★★★★

PPO (Proximal Policy 
Optimization) ★★★★☆ ★★★★★ ★★★★★+

• In practice, the PPO's performance is generally better than DPO's, possibly because PPO uses on-
policy data. DPO uses direct preference data and mathematically derives the "optimal" reward 
model, which may not be better than modeling the reward model in PPO, because the reward 
model itself has generalization capabilities.

• SFT requires more data, meaning that to achieve the same effect, more data needs to be prepared 
at the beginning. In contrast, PPO can use the reward model to provide supervisory signals, so less 
data preparation is needed.



RLHF: Real-World Application

Our approach to post-training is a 
combination of supervised fine-tuning 
(SFT), rejection sampling, proximal 
policy optimization (PPO), and direct 
preference optimization (DPO).

The quality of the prompts that are used 
in SFT and the preference rankings that 
are used in PPO and DPO has an 
outsized influence on the performance 
of aligned models. 



Current Trends

Alignment Signal Beyond Human Preference:

Signal from AI:
• 8 Jan 2024, Self-Rewarding Language Models (from itself)
• 2 Jan 2024, SPIN: Self-Play Fine-Tuning Converts Weak Language Models to Strong

Language Models (from itself)
• 14 Dec 2023, Weak-to-strong generalization (from weak model)
• 1 Sep 2023, RLAIF: Scaling Reinforcement Learning from Human Feedback with AI

Feedback (from strong model)

Signal from Tool:
• 22 Feb 2024, OpenCodeInterpreter Integrating Code Generation with Execution and

Refinement
• 26 Jun 2023, InterCode: Standardizing and Benchmarking Interactive Coding with Execution

Feedback
• 25 May 2023, Tuning Models of Code with Compiler-Generated Reinforcement Learning

Feedback



Current Trends
Alignment Method:

Ongoing improvements in RLHF w/o RM (DPO like): 
• 28 Mar 2024, sDPO: Don't Use Your Data All at Once (stepwise train, update reference model)
• 15 Apr 2024, TR-DPO: Learn Your Reference Model for Real Good Alignment (update 

reference model)
• 12 Mar 2024, ORPO: Monolithic Preference Optimization without Reference Model (direct 

improve positive instances’ likelihood, decrease negative instances’ likelihood)
• 18 Apr 2024, Token-level Direct Preference Optimization  (fine-grained preference)
• 2 Feb 2024, KTO: Model Alignment as Prospect Theoretic Optimization (classification loss 

rather than ranking loss)

Theory and Analysis:
• 18 Apr 2024, From r to Q∗: Your Language Model is Secretly a Q-Function 
• 16 Apr 2024, Is DPO Superior to PPO for LLM Alignment? A Comprehensive Study
• 18 Oct 2023, A General Theoretical Paradigm to Understand Learning from Human 

Preferences (IPO) (Make policy towards reference model)
• 13 Sep 2023, Statistical Rejection Sampling Improves Preference Optimization (DPO 

preference data constructed by reject sampling)



Current Trends

• Prompt engineering ongoing improvements: 
• 17 Apr 2024: Many-Shot In-Context Learning

• SFT ongoing improvements: 
• 7 Mar 2024: Common 7B Language Models Already Possess Strong Math 

Capabilities (The potential of LLM is very high and can be further improved 
with increased data volume.) 



Thank you!


